Smaller Text Classifiers with Discriminative Cluster Embeddings

Mingda Chen Kevin Gimpel Toyota Technological Institute at Chicago

Motivation

Word embedding parameters often dominate overall model sizes in neural methods for natural language processing. Can we reduce embedding parameters for text classification tasks?

Discriminative Cluster Embeddings

Standard Embedding (SE): Each *word* has its own word embedding vector.

One-hot vector represents embedding membership

n: Vocabulary size m: Embedding dimension

Cluster Embedding (CE):

- Each *cluster* has its own embedding vector.
- \Box Each word *i* has a cluster probability vector a_i .
- □ End-to-end training with classification loss.
- \Box Cluster membership h_i is treated as latent variable.
- **D** Difficulty: non-differentiable argmax $h_i = \arg \max a_{ij}$

k: Number of clusters

During training, use samples t_i from Gumbel-Softmax(a_i) as an approximation to one_hot(h_i)

Test time, h_i is determined by $t_i = one_hot(argmax(a_i))$

Embedding vector is computed by $e_i = t_i \cdot W$

Learned Word Clusters

Data labels: World **Business** Sci/Tech Sports

Word clusters learned using CE model million week third percent which 000 ago are after from has another down home official security china international coun Heavyweights operational coordinated hea com internet technology ibm google rese market quarter sales deals bid growth t Championship yankees defense player co Troops press attack forces peace iran lee

Embedding matrix

l on AG News					
o reports once					
than but end					
ntry court city					
ealing rewarded					
earch windows					
rade economic					
ontract football					
ed army killing					

Cluster Adjusted Embeddings (CAE): Each word has an additional 1-dimensional vector that gets concatenated

to the cluster embedding.

Cluster probability Embedding matrix Additional embedding vector

Mixture Embedding (ME): Select the most frequent *u* words to use unique embedding vectors and the remaining words use cluster embedding.

Effect of Hyperparameters 1.0 0.9 —— ME — — MF ---- CAE ---- CAE ····· SE - - · CE - - · CE 0.8 100 20 20000 40000 80 40 # Cluster (AG News) 1.0 T 0.9 —•• Yelp-P. Yelp-P. ••••• Yelp-F. •••• Yelp-F 0.8 - - · AGNews - - · AGNews - - · DBPedia - - · DBPedia 0.6 1500 2000 1000 SE embedding dim.

Embedding matrix

Yelp Polarity Review

	AG News		DBPedia		Yelp Full		Yelp Polarity	
Size	0.05	0.1	0.05	0.1	0.05	0.1	0.05	0.1
SE	84.8	90.4	95.3	98.1	59.2	62.6	93.4	95.5
CE	89.2	90.7	96.9	97.9	60.3	61.0	93.9	94.4
CAE	86.3	90.7	96.1	98.1	61.2	62.3	93.7	95.3
ME	90.3	91.5	97.5	98.3	61.4	63.4	95.2	95.8

	Embedding size (MB)	Model size (MB)	Test acc (%)
Glove Baseline	85.947	_	87.18
Compositional coding*	2.305	—	88.15
Re-implemented compositional coding	0.245	0.353	83.43
Standard Embedding	0.092	0.137	86.84
Cluster Embedding	0.004	0.046	85.58
Cluster Adjusted Embedding	0.016	0.058	86.94
Mixture Embedding	0.009	0.051	88.22

* Raphael Shu and Hideki Nakayama. Compressing word embeddings via deep compositional code learning. ICLR 2018

ΓΟΥΟΤΑ TECHNOLOGICAL INSTITUTE **AT CHICAGO**

Experiments

Yelp Full Review

Development accuracy vs model size (MB) on four datasets.

Test results (%). Model sizes are in MB.

IMDB test results.