Improving In-Context Few-Shot Learning via Self-Supervised Training

Mingda Chen¹, Jingfei Du², Ramakanth Pasunuru², Todor Mihaylov², Srini Iyer², Veselin Stoyanov², Zornitsa Kozareva² ¹Toyota Technological Institute at Chicago ²Meta AI

In-Context Few-Shot Learning	Self-Supervised Tasks	Experiments						
Solve unseen tasks at inference time while forgoing any weight updates Input: Context word: fit. Question: The trophy doesn't fit into the brown suitcase because is too large. Output: trophy. (extra input-output pairs for the same task) Input: Context word: water. Question: I poured water from the bottle into the cup until the was empty. Output: bottle.	 Original Raw Text: Natural language processing is a subfield of computer science. The goal is a computer capable of "understanding" the contents of documents. Next Sentence Generation (NSG) Input: Natural language processing is a subfield of computer science. Output: The goal is a computer capable of "understanding" the contents of documents. Masked Word Prediction (MWP) Input: Natural language processing is a subfield of The goal is a computer capable of "understanding" the contents of documents. 	 Setup We constory corpus. The final million in task. We evaluand eight with the set of the set o	 tup We constructed data from the RoBERTa training corpus. The final training data contains approximately 1 million instances with 250k training instances per task. We evaluate models on five tasks from SuperGLUE and eight tasks from Natural-Instructions. Baseline: ExtraLM: Perform additional LM pretraining on the portion of the original raw text used in our self-supervised training. Baseline: CrossTask: Using human-annotated datasets in the intermedia fine-tuning step. 					
Model prediction	Output: Computer Science		BoolQ	MultiRC	СОРА	RTE	СВ	Avg.
Prior Work Language Model Pre-Training Extra Intermediate Fine-Tuning Step	Last Phrase Prediction (LPP) Input: Natural language processing is a subfield of computer science. Question: The goal is a computer capable of "understanding"? Output: the contents of documents.	LM ExtraLM CrossTask	48.6 49.6 53.4	5.5/53.7 4.9/54.8 1.2/57.2	83.4 82.6 76.2	51.9 52.9 54.3	53.6 51.4 44.6	51.8 51.7 49.6
Fine-Tuning on Human-Appotated Datasets	 Input: Natural language processing is a subfield of computer science. Question: The goal is a computer capable of "understanding"? Answer: the development of new models. Output: False. Classification (CL) For example, when input consists of sentences from multiple documents: Input: Natural language processing is a subfield of computer science. Computer vision deals with 	SuperCIUE results						
Individual Particular Context Few-Shot Learning Our Work Can self-supervised tasks be used in the intermediate fine-tuning steps?			QG AG MM VF					 z.
		GPT3	43.0	50.0 32 5	70.0 74.0	32.0	48.	8
		ExtraLM	41.1	32.7	75.9	25.2	43.	7
		CrossTas	k 38.1	41.6	69.2	23.0	42.	9

science. Computer vision deals with ...

Output: False

Natural-Instructions results

72.3

28.6

45.5

37.5

SelfSup

43.9