Evaluation Benchmarks and Learning Criteria for Discourse-Aware Sentence Representations

Mingda Chen

Joint work with Zewei Chu and Kevin Gimpel

Prior work on evaluation benchmarks

- Focus on capabilities of representations for stand-alone sentences
 - Sentiment analysis
 - Linguistic properties, e.g. verb tense prediction
 - •
- What about the broader context (i.e. discourse) for a sentence?

Our contributions

An evaluation suite for evaluating discourse

knowledge encoded in sentence representations.

- Benchmark and compare several pretrained sentence representations.
- Novel learning criteria for capturing discourse structures.

- Focus on evaluating the role of a sentence in its discourse context.
- 7 task groups, covering multiple domains (e.g. Wikipedia, stories, dialogues, and scientific literature).
- Probing tasks. Pretrained embeddings are kept fixed and we only use simple classifiers.

$$[x_1, x_2, x_1 \odot x_2, |x_1 - x_2|]$$

What is a discourse?

• A discourse is a coherent, structured group of sentences that acts as a fundamental type of structure in natural language.

What is a discourse?

- Linearly-structured, e.g. sentence ordering.
 - The timing of introducing entities.
- Tree-structured, e.g. RST discourse tree.

"N" represents "nucleus", containing basic information for the relation.

3

"S" represents "satellite", containing additional information about the

NS-Attribution

2

Discourse Relations

- Two human-annotated datasets: Penn Discourse Treebank (PDTB) and RST Discourse Treebank (RST-DT).
- PDTB provides discourse markers for adjacent sentences, whereas RST-DT offers document-level discourse trees

discourse trees.

Discourse Relations – PDTB

- Use a pair of sentences to predict discourse relations.
- We focus on predicting implicit relations (PDTB-I) and explicit relations (PDTB-E).

PDTB-E

- 1. In any case, the brokerage firms are clearly moving faster to create new ads than they did in the fall of 1987.
- 2. But it remains to be seen whether their ads will be any more effective.

Label: Comparison.Contrast

PDTB-I

- 1. "A lot of investor confidence comes from the fact that they can speak to us," he says.
- [so] "To maintain that dialogue is absolutely crucial."
 Label: Contingency.Cause

- Text is segmented into basic units, elementary discourse units (EDUs), upon which a discourse tree is built recursively.
- We use 18 fine-grained relations.

 The European Community's consumer price index rose a provisional 0.6% in September from August
 and was up 5.3% from September 1988,
 according to Eurostat, the EC's statistical agency.

- Text is segmented into basic units, elementary discourse units (EDUs), upon which a discourse tree is built recursively.
- We use 18 fine-grained relations.

 The European Community's consumer price index rose a provisional 0.6% in September from August
 and was up 5.3% from September 1988,
 according to Eurostat, the EC's statistical agency.

 The European Community's consumer price index rose a provisional 0.6% in September from August
 and was up 5.3% from September 1988,
 according to Eurostat, the EC's statistical agency.

- We first encode EDUs into vectors, then use averaged vectors of EDUs of subtrees as the representation of the subtrees.
- The target prediction is the label of nodes in discourse trees.
- We use a linear classifier and the input is

 $[x_{\text{left}}, x_{\text{right}}, x_{\text{left}} \odot x_{\text{right}}, |x_{\text{left}} - x_{\text{right}}|]$

 The European Community's consumer price index rose a provisional 0.6% in September from August
 and was up 5.3% from September 1988,
 according to Eurostat, the EC's statistical agency.

- We first encode EDUs into vectors, then use averaged vectors of EDUs of subtrees as the representation of the subtrees.
- The target prediction is the label of nodes in discourse trees.
- We use a linear classifier and the input is

 $[x_{\text{left}}, x_{\text{right}}, x_{\text{left}} \odot x_{\text{right}}, |x_{\text{left}} - x_{\text{right}}|]$

Sentence Position (SP)

- Probe the knowledge of a linearly-structured discourse.
- Data source: Wikipedia article, ROC Stories corpus, and arXiv papers.
- We take five consecutive sentences from a corpus, randomly move one of these five sentences to the first position, and ask models to predict the true position of the first sentence in the modified sequence.
 - She was excited thinking she must have lost weight.
 - Bonnie hated trying on clothes.
 - She picked up a pair of size 12 jeans from the display.
 - When she tried them on they were too big!
 - Then she realized they actually size 14s, and 12s.

Sentence Position (SP)

- Probe the knowledge of a linearly-structured discourse.
- Data source: Wikipedia article, ROC Stories corpus, and arXiv papers.
- We take five consecutive sentences from a corpus, randomly move one of these five sentences to the first position, and ask models to predict the true position of the first sentence in the modified sequence.
 - She was excited thinking she must have lost weight.
 - Bonnie hated trying on clothes.

True position

- She picked up a pair of size 12 jeans from the display.
- When she tried them on they were too big!
- Then she realized they actually size 14s, and 12s.

- Binary prediction: determine whether a sequence of 6 sentences forms a coherent paragraph.
- Data source: Ubuntu IRC Channel and Wikipedia.
- We start with a coherent sequence of six sentences, then randomly replace one of the sentences (chosen uniformly among positions 2-5) with a sentence from another discourse.

- An example from the Wikipedia domain
 - 1. The Broadway production took place on May 1, 1947, at the Ethel Barrymore Theatre.
 - 2. The Metropolitan Opera presented it once, on July 31, 1965.
 - 3. After years on the job, Ramsay has found himself one of the division's few real experts .
 - 4. Despite his attempts to get her attention for sufficient time to ask his question, Lucy is occupied with interminable conversations on the telephone.
 - 5. Between her calls, when Lucy leaves the room, Ben even takes the risk of trying to cut the telephone cord, though his attempt is unsuccessful.
 - 6. Not wanting to miss his train, Ben leaves without asking Lucy for her hand in marriage.

- An example from the Wikipedia domain
 - 1. The Broadway production took place on May 1, 1947, at the Ethel Barrymore Theatre.
 - 2. The Metropolitan Opera presented it once, on July 31, 1965.

- 3. After years on the job, Ramsay has found himself one of the division's few real experts .
- 4. Despite his attempts to get her attention for sufficient time to ask his question, Lucy is occupied with interminable conversations on the telephone.
- 5. Between her calls, when Lucy leaves the room, Ben even takes the risk of trying to cut the telephone cord, though his attempt is unsuccessful.
- 6. Not wanting to miss his train, Ben leaves without asking Lucy for her hand in marriage.

 Solving this task is non-trivial as it may require the ability to perform inference across multiple sentences.

Experiments

- We benchmark following pretrained models
 - on DiscoEval:
 - Skip-thought
 - DisSent
 - BERT

- InferSent
- ELMo

• BERT-Large performs best for the most of tasks.

• Skip-thought performs best on RST-DT.

• InferSent performs much worse than other pretrained embeddings that are trained with information about neighboring sentences.

65

Experiments – Per-Layer analysis based on BERT

0 -	11.6	63.9	69.0	57.9	36.6	62.6	51.2	75.7	32.4	33.7	44.8
1 -	20.7	67.5	72.6	66.4	41.4	63.7	54.0	76.3	35.3	36.1	49.4
2 -	18.8	68.1	73.1	68.0	40.6	63.9	51.2	76.0	35.4	36.3	49.6
3 -	41.1	75.0	73.8	69.9	40.2	64.2	51.1	77.0	35.0	35.6	47.6
4 -	39.1	73.8	74.6	72.3	44.1	64.8	52.0	78.0	36.6	36.4	53.9
5 -	32.1	69.8	77.1	73.0	46.9	66.7	51.5	79.8	40.3	38.7	55.9
6 -	28.8	64.1	78.4	72.2	48.0	66.7	56.1	79.7	41.1	39.9	56.4
7 -	25.5	63.1	79.0	71.4	47.9	67.6	56.1	79.8	42.0	41.1	58.8
8 -	26.8	63.6	80.3	71.5	49.2	68.3	57.9	79.6	43.6	42.3	58.9
9 -	26.8	60.9	81.3	70.6	48.9	68.3	59.1	79.5	43.7	41.8	59.0
10 -	30.1	59.6	81.3	69.3	49.4	68.0	60.2	79.8	43.7	40.9	58.8
11 -	32.8	66.0	80.8	68.6	47.8	66.7	60.3	79.7	41.4	40.2	55.3
	USS	SSS	SC	Probing	SP	BSO	DC	SSP	PDTB-E	PDTB-I	RST-DT

Experiments – Per-Layer analysis based on BERT

SentEval					DiscoEval						
								↓			
0 -	11.6	63.9	69.0	57.9	36.6	62.6	51.2	75.7	32.4	33.7	44.8
1	20.7	67.5	72.6	66.4	41.4	63.7	54.0	76.3	35.3	36.1	49.4
2	18.8	68.1	73.1	68.0	40.6	63.9	51.2	76.0	35.4	36.3	49.6
3 -	41.1	75.0	73.8	69.9	40.2	64.2	51.1	77.0	35.0	35.6	47.6
4	39.1	73.8	74.6	72.3	44.1	64.8	52.0	78.0	36.6	36.4	53.9
5	32.1	69.8	77.1	73.0	46.9	66.7	51.5	79.8	40.3	38.7	55.9
6 -	28.8	64.1	78.4	72.2	48.0	66.7	56.1	79.7	41.1	39.9	56.4
7	25.5	63.1	79.0	71.4	47.9	67.6	56.1	79.8	42.0	41.1	58.8
8 -	26.8	63.6	80.3	71.5	49.2	68.3	57.9	79.6	43.6	42.3	58.9
9 -	26.8	60.9	81.3	70.6	48.9	68.3	59.1	79.5	43.7	41.8	59.0
10	30.1	59.6	81.3	69.3	49.4	68.0	60.2	79.8	43.7	40.9	58.8
11 -	32.8	66.0	80.8	68.6	47.8	66.7	60.3	79.7	41.4	40.2	55.3
	USS	SSS	SC	Probing	SP -	BSO	DC	SSP	PDTB-E	PDTB-I	RST-DT

Experiments – Per-Layer analysis

	ELMo	BERT-Base
SentEval	0.8	5.0
DiscoEval	1.3	8.9

Average of the layer number for the best layers in SentEval and DiscoEval.

• Assumption: deeper layers \rightarrow higher-level structures

Aligns with the information needed to solve the discourse tasks.

Human Evaluation

	Se	ntence Positi	Discourse Coherence			
Human		77.3	87.0			
BERT-Large		49.9	60.5			
	Wiki	arXiv	ROC	Wiki	Ubuntu	
Human	84.0	76.0	94.0	98.0	74.0	
BERT-Large	43.0	56.0	50.9	64.9	56.1	

• Human still outperforms BERT-Large by a large margin.

Learning Criteria

- General idea: make use of document structures.
- Document structures are related to discourse comprehension, showing how are the information units unfolded.
- Naturally annotated data from structured document collections, e.g. Wikipedia.

Learning Criteria

Learning Criteria

- Our models are built upon Skip-thought. All are trained with Neighboring Sentence Prediction (NSP).
- Models are trained to reconstruct bag-of-words representations of target sequences in NSP and SDT.

Experiments – Benchmark proposed learning objectives on DiscoEval

Experiments – Benchmark proposed learning objectives on DiscoEval

• SPP+NL gives the strongest performance compared to other combinations.

Experiments – Benchmark proposed learning objectives on DiscoEval

• Simply adding all the losses is not optimal as some of them could be contradictory.

Conclusion

- We introduce DiscoEval for evaluating discourse knowledge encoded in pretrained sentence representations, which is comprised of 7 task groups and covers multiple domains.
- We also introduce a set of multi-task losses that make use of document structures for learning discourseaware sentence representations.
- Human evaluations show that humans still outperform BERT-Large by a large margin.

Thanks!

DiscoEval is available at https://github.com/ZeweiChu/DiscoEval

