

EntEval: A Holistic Evaluation Benchmark for Entity Representations

Mingda Chen*1, Zewei Chu*2, Yang Chen4, Karl Stratos3, Kevin Gimpel1

¹Toyota Technological Institute at Chicago ²University of Chicago ³Rutgers University ⁴Ohio State University

*Equal Contribution. Listed in alphabetical order.

Learning Entity Representations

Entity Neural Networks Fixed-length vector

We are interested in two approaches:

- Contextualized entity representations (CER) that encode an entity based on the context it appears regardless of whether the entity is seen before.
- Descriptive entity representations (DER) that rely on entries in Wikipedia.

EntEval

7 probing task groups.

Entity Typing (ET)

ET = assign types to an entity given only the mention context.

Logic was established as **a discipline** by Aristotle, who established its fundamental place in philosophy.

Wisdom University Philosophy

⊗

✓

Coreference Arc Prediction (CAP)

CAP = classify if two entities are the same given context

Revenues of \$14.5 billion were posted by [Dell]. [The company] ...

Entity Factuality Prediction (EFP)

EFP = classify the correctness of statements for entities.

TD Garden has held Bruins games.

Accident

Contexualized Entity Relationship Prediction (CP)

CP = classify the correctness of statements for entity pairs.

Gin and vermouth can make a martini.

EntEval cont.

Named Entity Disambiguation (NED)

NED = link a named-entity mention to its entry in a knowledge base.

SOCCER - JAPAN GET LUCKY WIN, CHINA IN SURPRISE DEFEAT.

- A. China: China is a country in East Asia ...
- B. Porcelain: Porcelain is a ceramic material ...
- C. China_men's_national_basketball_team: The Chinese men's national basketball team represents the ...
- D. China_PR_national_football_team: The Chinese national football team recognized as China PR by FIFA ...

Entity Similarity and Relatedness (ESR)

ESR = predict the similarity of two entities given descriptions.

Entity Name					
Apple Inc.					
Steve Jobs					
Microsoft					
Ford Motor Company					

Entity Relationship Typing (ERT)

ERT = classify the types of relations between a pair of entities given descriptions.

book.school_or_movement.associated_works
English Renaissance Volpone

Statistics of EntEval

Task	Dataset	#class	Task	CAP	CP	EFP	ET	ESR	ERT
	Rare CONLL-YAGO	4							

Dataset References

- ET: Ultra-fine entity typing.
- CAP: PreCo: A large-scale dataset in preschool vocabulary for coref resolution.
- CP: Conceptnet 5.5: An open multilingual graph of general knowledge.
- NED: Robust disambiguation of named entities in text.
- NED: Rare entity prediction with hierarchical lstms using external descriptions.
- ESR: Kore: keyphrase overlap relatedness for entity disambiguation.
- ESR: Jointly embedding entities and text with distant supervision.
- ERT: Freebase: a collaboratively created graph database for structuring human knowledge.

Hyperlink-Based Training

Given a context sentence $\mathcal{X}_{1:T_x}$ with mention span (i,j) and a description sentence $\mathcal{Y}_{1:T_y}$

We use the same bidirectional language modeling loss $l_{\mathrm{lang}}(x_{1:T_x})+l_{\mathrm{lang}}(y_{1:T_y})$ as in ELMo, where

$$l_{\text{lang}}(u_{1:T}) = -\sum_{t=1}^{T} \log p(u_{t+1}|u_1, \dots, u_t) + \log p(u_{t-1}|u_t, \dots, u_T)$$

In addition, we define two bag-of-words reconstruction losses

$$\begin{split} l_{\text{ctx}} &= -\sum_{t} \log q(x_t | f_{\text{ELMo}}([\text{BOD}]y_{1:T_y}, 1, T_y)) & \underset{\text{Se}}{\longrightarrow} p_{\text{Se}} \\ l_{\text{desc}} &= -\sum_{t} \log q(y_t | f_{\text{ELMo}}([\text{BOC}]x_{1:T_x}, i, j)) & \underset{\text{cc}}{\longrightarrow} p_{\text{Se}} \\ & \underset$$

The final training loss for **EntELMo** is

$$l_{\text{lang}}(x_{1:T_x}) + l_{\text{lang}}(y_{1:T_y}) + l_{\text{ctx}} + l_{\text{desc}}$$

Experiment Results							
	ET	CAP	EFP	NED	СР	ERT	ESR
GloVe	10.3	71.9	67.0	41.2	52.6	40.8	50.9
BERT Base	32.0	80.6	74.8	50.6	65.6	42.2	28.8
BERT Large	32.3	79.1	76.7	54.3	66.9	48.8	32.6
ELMo	35.6	79.1	75.8	51.6	61.2	46.8	60.3

Table 1. Performances of entity representations on EntEval tasks.

	ET	CAP	EFP	NED	СР	ERT	ESR
EntELMo Baseline	31.3	78.0	71.5	48.5	59.6	46.5	61.6
EntELMo	32.2	76.9	72.4	49.0	59.9	45.7	59.7
EntELMo w/o $l_{ m ctx}$	33.2	73.5	71.1	48.9	59.4	44.6	53.3
EntELMo w/ $l_{ m etn}$	33.6	76.2	70.9	49.3	60.4	42.9	49.0

Table 2. EntELMo w/ $l_{\rm etn}$ is trained with a modified version of $l_{\rm ctx}$ where we only decode entity mentions instead of the whole context.

Static vs non-static entity representations

	CONLL-YAGO
ELMo	71.2
Gupta et al. 2017	65.1
Ganea and Hofmann, 2017	66.7

Scan to check out the code and data

