Variational Sequential Labelers for Semi-Supervised Learning

Mingda Chen, Qingming Tang, Karen Livescu, Kevin Gimpel

Sequence Labeling

Part-of-Speech (POS) Tagging

determiner	noun	verb	determiner	adjective	noun	coordinating conjunction	adverb	verb p	ounctuation
This	item	is	а	small	one	and	easily	misse	d.

Named Entity Recognition (NER)

B-ORG	0	B-MISC	Ο	0	Ο	B-MISC	0	0
EU	rejects	German	call	to	boycott	British	lamb	

Overview

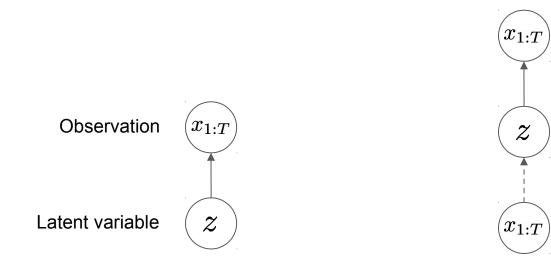
- Latent-variable generative models for sequence labeling
- 0.8 ~ 1% absolute improvements over 8 datasets without structured inference
- 0.1 ~ 0.3% absolute improvements from adding unlabeled data

Why latent-variable models?

- Natural way to incorporate unlabeled data
- Ability to disentangle representations via the configuration of latent variables
- Allow us to use neural variational methods

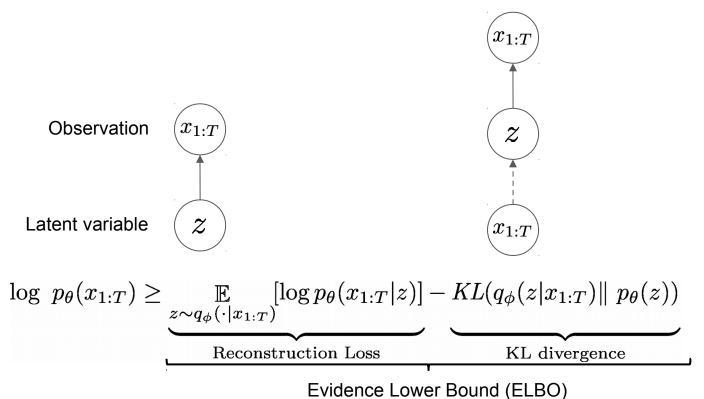
Variational Autoencoder (VAE)

[Kingma and Welling, ICLR'14; Rezende and Mohamed, ICML'15]

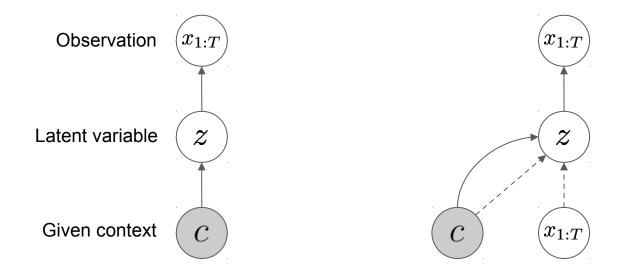


Variational Autoencoder (VAE)

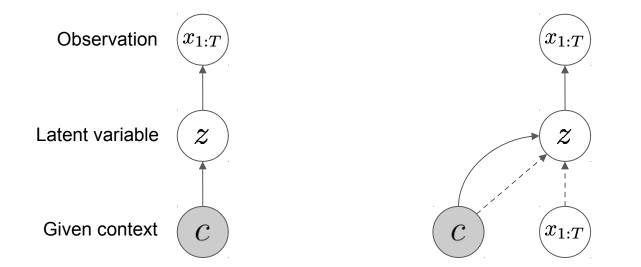
[Kingma and Welling, ICLR'14; Rezende and Mohamed, ICML'15]



Conditional Variational Autoencoder



Conditional Variational Autoencoder



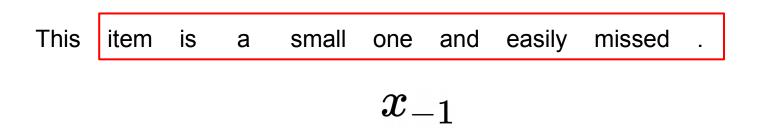
 $\log p_{\theta}(x_{1:T}|\boldsymbol{c}) \geq \mathbb{E}_{z \sim q_{\phi}(\cdot|x_{1:T},\boldsymbol{c})}[\log p_{\theta}(x_{1:T}|\boldsymbol{z})] - KL(q_{\phi}(z|x_{1:T},\boldsymbol{c})|| p_{\theta}(z|\boldsymbol{c}))$

$$x_{-t}$$

The input words other than the word at position t

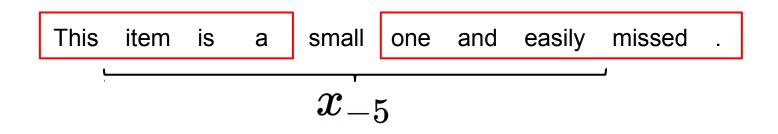
$$x_{-t}$$

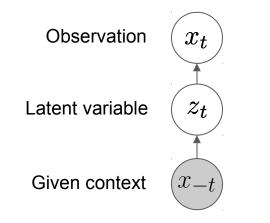
The input words other than the word at position t

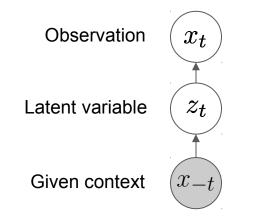


$$x_{-t}$$

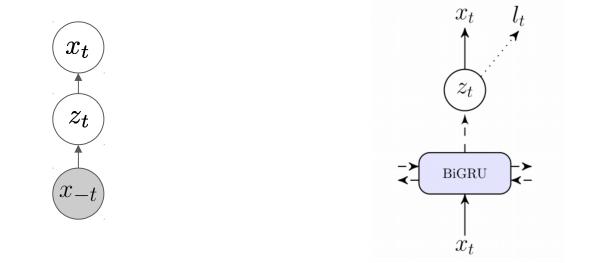
The input words other than the word at position t

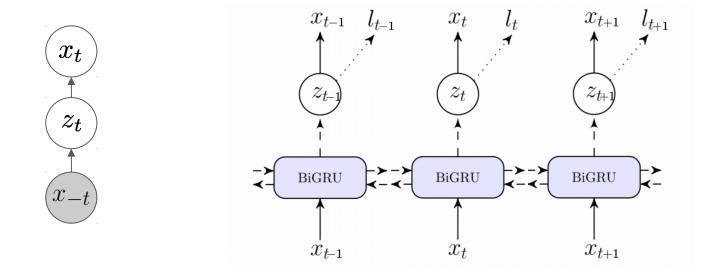


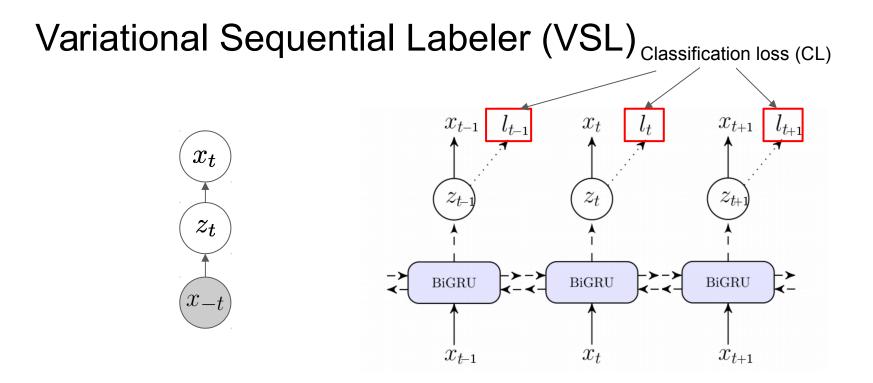


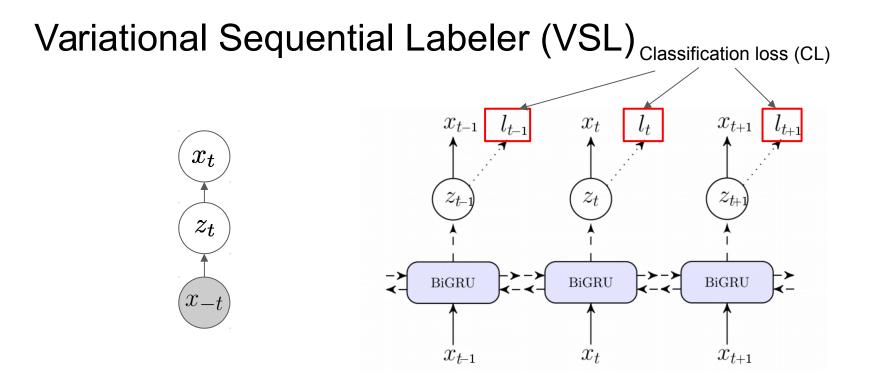


$$\log p_{\theta}(x_t | x_{-t}) \ge \mathbb{E}_{z_t \sim q_{\phi}(\cdot | x_{1:T}, t)} [\log p_{\theta}(x_t | z_t)] - KL(q_{\phi}(z_t | x_{1:T}, t) \| p_{\theta}(z_t | x_{-t}))$$









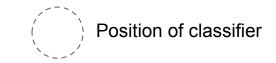
VSL: Training and Testing

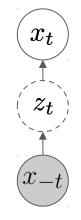
Training

- Maximize ELBO $\alpha \cdot CL$ where α is a hyperparameter
- Use one sample from Gaussian distribution using reparameterization trick

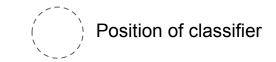
Testing

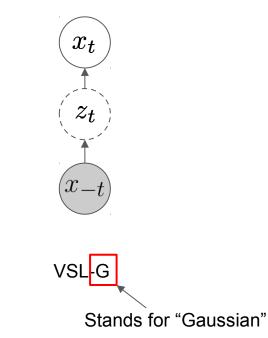
Use the mean of Gaussian distribution

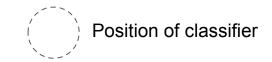


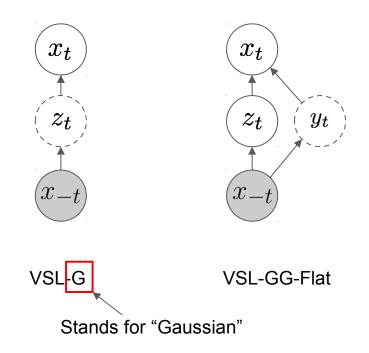


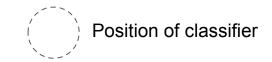
VSL-G

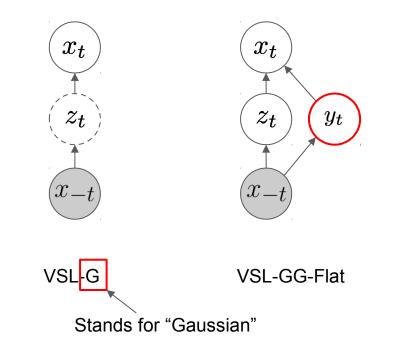


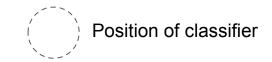


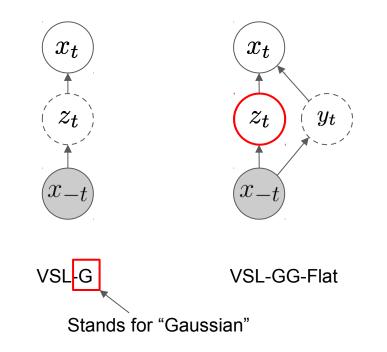


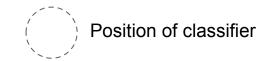


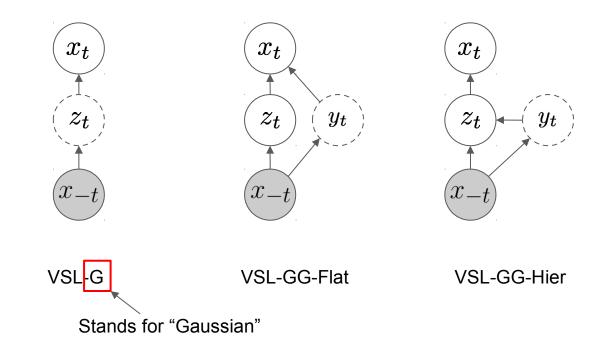


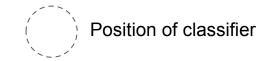


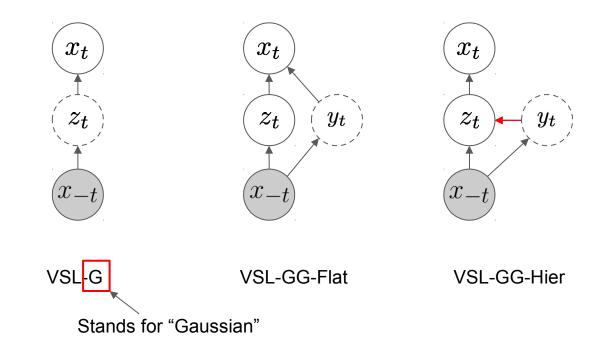






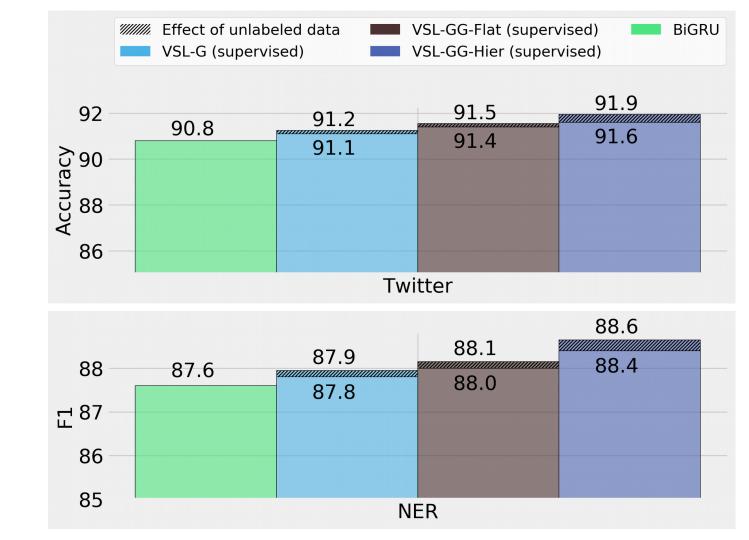




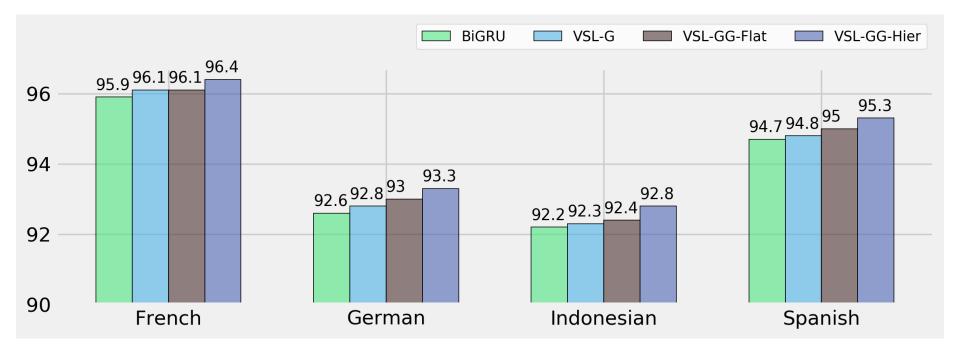


Experiments

- Twitter POS Dataset
 - > Subset of 56 million English tweets as unlabeled data
 - ➤ 25 tags
- Universal Dependencies POS Datasets
 - > 20% of original training set as labeled data
 - ➣ 50% of original training set as unlabeled data
 - ➤ 6 languages
 - ➤ 17 tags
- CoNLL 2003 English NER Dataset
 - ➤ 10% of original training set as labeled data
 - ➣ 50% of original training set as unlabeled data
 - ➢ BIOES labeling scheme

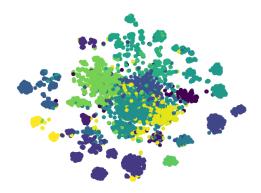


Universal Dependencies POS

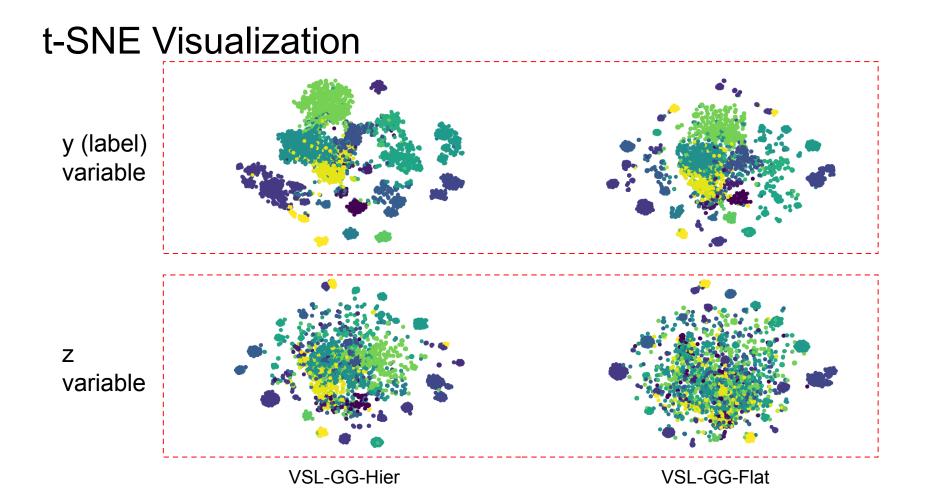


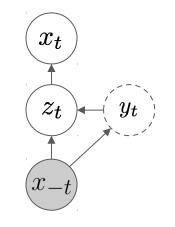
t-SNE Visualization

- Each point represents a word token
- Color indicates gold standard POS tag in Twitter dev set

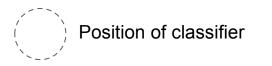


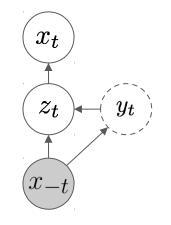
BiGRU baseline

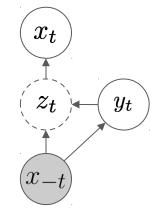




VSL-GG-Hier

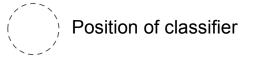


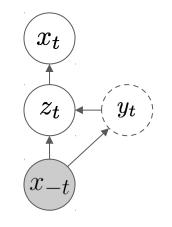




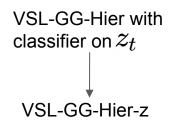
VSL-GG-Hier

VSL-GG-Hier with classifier on \mathcal{Z}_t





Position of classifier

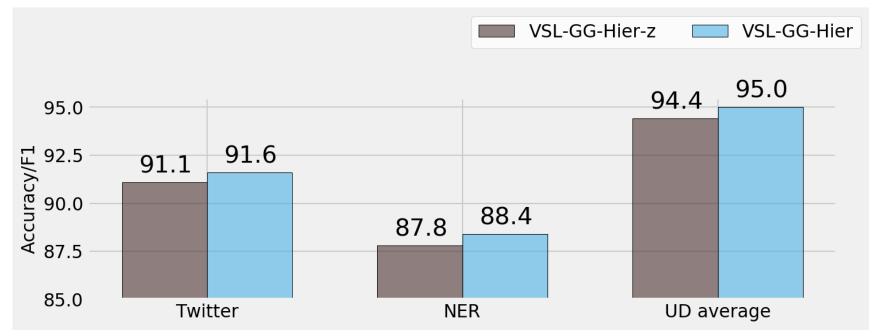


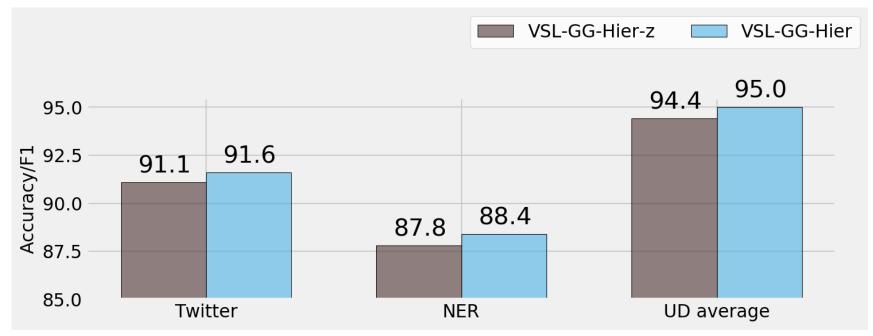
 y_t

 x_t

 z_t

 x_{-}





Hierarchical structure is only helpful when classification loss and reconstruction loss are attached to different latent variables

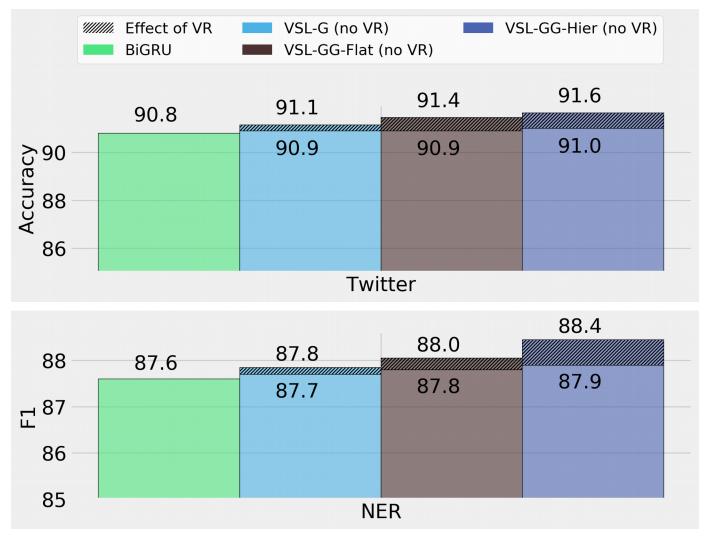
Effect of Variational Regularization (VR)

KL divergence between approximated posterior and prior

VR

Randomness in the latent space

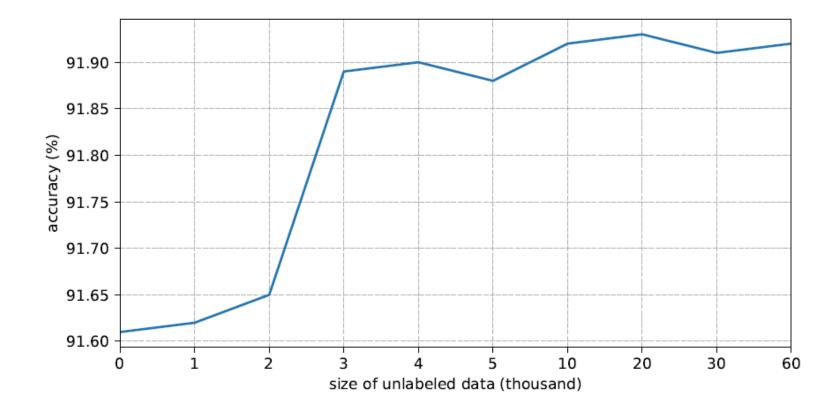
Effect of VR



Effect of Unlabeled data

- Evaluate VSL-GG-Hier on Twitter dataset
- Subsample unlabeled data from 56 million tweets
- ✤ Vary the number of unlabeled data

Effect of Unlabeled data



Summary

- ✤ We introduced VSLs for semi-supervised learning
- Best VSL uses multiple latent variable and arranged in hierarchical structure
- Hierarchical structure is only helpful when classification loss and reconstruction loss are attached to different latent variables
- VSLs show consistent improvements across 8 datasets over a strong baseline

Thank you!